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A four-phase percolation problem is used to simulate the Josephson model for 
high-temperature superconductivity both as a four-phase and a three-phase 
system. We implement the method on an IBM PC microcomputer using PASCAL 
language. 

Percolation theory (Stauffer, 1985) has many applications to critical 
phenomena. Recently it has been used (Meilikhov and Gershanov, 1989; 
Clem, 1988) in a model of high-temperature superconductivity (HTSC) 
(Bednorz and Muller 1986) called the Josephson model. This model depends 
on the granular structure of HTSC. In this model HTSC is represented by 
superconducting grains. These grains are connected by links whose conduc- 
tivities depend on their lengths. This corresponds to a percolation problem 
where the randomness is not the existence of a bond (or a site), but a 
property of the bond (or the site). 

This can be simulated as follows: Distribute superconducting sites 
randomly. The properties of the sites between two superconducting sites 
depend on their label numbers. For simplicity we assume that there are 
three types (or two) of these intermediate sites. Thus, we are faced with a 
four- (or three-) phase percolation problem. 

To calculate the conductivity, we use Grey Scaling (Ahmed and 
Tawansi, 1991, and EI-Misiery et aL, 1991, and the references therein). For 
completeness, we review this method here. The idea of scaling in critical 
phenomena depends on the hypothesis that near the critical threshold the 
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Fig. 1. The reduction used in equation (1). 

correlation length is so large that the system is self-similar. This enables us 
to lump small units together to build larger units without changing the 
system significantly. We apply this idea to calculate the conductivity of a 
square grid network (square lattice) as follows: Consider a square grid 
network with node conductivities cl, c2, c3, and c4 (see Figure 1). Assume 
that the current direction is vertically downward, so that nodes 1 and 2 are 
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Fig. 2. The decimal logarithm of  the resistivity as a function of Pt and P2 for 1~ = 0.0. 
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Fig. 3. The decimal logarithm of the resistivity as a function of  P1 and P2 for P3 = 0.1. 

in series, and nodes 3 and 4 are in series. Then this node (cell) is replaced 
by an equivalent supernode whose conductivity c is 

Cl C2 C3 C4 
c = + - -  (1 )  

c1+ c2 c3+c4 

We carry on this lumping process iteratively until the whole network is 
equivalent to a single super-super . . . . .  supernode whose conductivity is 
equal to the conductivity of the random network. 

Theoretically, Grey Scaling is a real-space renormalization imple- 
mented on a computer. Using this method, all the known results in site 
percolation about electrical conductivity, the critical concentration Pc, and 
the conductivity exponents in all dimensions 2-< d-< 6 have been repro- 
duced. Furthermore, this method avoids having to solve Kirchott's equations 
at each node. Consequently, it is easily implemented on small computers, 
including PCs. 
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Fig. 4. The  dec imal  loga r i thm o f  the  resist ivity as a func t ion  o f  P~ and  P2 for P3 = 0.3. 

Recent ly  (E1-Misiery et al., 1991) the conduct iv i ty  o f  th ree-phase  sys- 
tems has been  s imulated.  In  this p a p e r  we find the conduct iv i ty  o f  four -phase  
systems. We assume the existence o f  four  types  o f  conduc tors  occupy ing  
r a n d o m l y  the nodes  o f  a square  grid network.  Let P~, i = 1, 2, 3, 4, be  the 
p robabi l i ty  o f  the ith phase ;  hence 

PI+Pa+P3+P4=I (2) 

and  the dis t r ibut ion func t ion  in conduct iv i ty  o- is 

g(O-)= P16(O--O-1)+ P28(O--O-2)+ Pa6(O--O-a)+ P46(~r-O-4) (3) 

In  our  s imula t ion  we set o-1 = 106, o'2 = 102, o'3 = 1 0 - 2 ,  and o-4= 10  --6. The 
critical surfaces  are 

P1 -- Pc = 0.6, P4 = 1 - Pc (4) 

which agree with the two- and  th ree-phase  results in two d imens ions  (E1- 
Misiery et al., 1991; Kugo t  and  Straley, 1979). There  are three regions for  
the conduct ivi ty .  The  first region is given by  /)1 >-0.6, in which the bulk  
conduct iv i ty  o- is o f  o rder  o-l, i.e., o- = O(o ' 0 .  The  second region is P 4 - 0 . 4 ,  
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The decimal logarithm of the resistivity as a function of P~ and P2 for P3 = 0.7. 

Fig. 6. 
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The decimal logarithm of the resistivity of the four-phase simulation for the Josephson 
model vs. the concentration P of the most insulating phase. 
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Fig. 7. 
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The decimal  logari thm of  the resistivity o f  the th ree-phase  s imulat ion for the Josephson  
model  vs. the concent ra t ion  P of  the most  insulat ing phase.  

in which 0"= 0(0"4). The third region is given by P1 <0.6 and P4<0.4 and 
in which 0" = 0(0"2) or or = 0(0"3). It is surprising that there is no surface 
separating those two values. The plateau noticed in the three-phase system 
(E1-Misiery et al., 1991) still exists in the four-phase system and its defining 
relations are 

Pl<Pc and P4< 1 - P c  (5) 

In Figures 2-5 we present the decimal logarithm of the resistivity log 
p (p = 1/o') as a function of P, and P2, with P3 set equal to 0.0, 0.1, 0.3, 
and 0.7, respectively. 

Having solved the four-phase problem, we can simulate the Josephson 
model for HTSC. We present two simulations. In the first we assume the 
existence of four phases, one of them a superconductor with conductivity 
0"1 = 108; the other three phases have conductivities 0-2 = 1000, o'3 = 10 -1, 
and o-4 = 10 -7 ,  respectively. We assume that P is the probability for the 
most insulating phase (the fourth). The distribution function is given by 

g ( o ' )  = P ~ ( 0 .  - 0"4) -[- (eO.6  _ P ) ~ ( o "  - 0.3) "~ (pO.3 _ pO.6) ~ (0 .  _ 0"2) 

+ (1 - P~ - 0"1) (6) 

This distribution function has been derived using the theoretical results for 
the Josephson model. The results for the logarithm of the resistivity vs. the 
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probabil i ty P are given in Figure 6. The critical concentration for the 
superconductor -nonsuperconductor  transition is given by 

P = 0 . 2 2  (7) 

which agrees with the theoretical results. 
A simpler three-phase system that simulates the Josephson model  can 

be obtained from the previous model by removing the second phase. The 
results are shown in Figure 7. 

We implemented our method on an IBM PC microcomputer  using 
PASCAL language. All the simulations were done on 64 x 64 square grid 
network and each result was averaged ten times. 
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